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SECTION I

FORMULATION AND SOLUTIONS

An approximate theory to define the stress field within a composite

laminate has recently been developed [IJ . It is the purpose of the present

communication to derive the solution for a significant class of stress con-

centration boundary value problems in composite laminates , na mely, the

f ree edge problem [2 , 3], based upon this new theory.

As discussed in Reference 1, we considera symmetric laminate in which each

layer is reinforced by a system of parallel fibers oriented at an angle 9 with

the x-axis (see Fig. 1 of [ 1 ] )  where the origin of coordinates is located at

the center of the laminate. The bod y is subjected to forces applied only on

the ends such that a constant axial strain € = € is imp sed. Each layer is

also under the influence of expansional strains e. (i = 1, 2 , 3, 6) which we

assume are constants. We also assume perfect bonding between adj acent

layers. Hence , the s t ress  field in this class of problems is a function of

y and z alone. The laminate consists of N layers which are identified by the

i n d e x k ( k = l , 2 , ”N) . As in [ 1] ,  we shall drop the index k except when

it is needed for clarity.

T o begin , we define the deformation measures  e~, ~~~~~~, and expansion-

al deformations a as

h— h_ 
* 

h _ .  —
- 

2
U , 

~ 
€2 = •~~~V~~y ~ €

3 
= 3w 

~ 
€
6 ~ (u, -fv ,~~

5h — A 5v* 5h — A 5u~’
€ 4 

= -~--( w , - w , )  + —i-— , €
~~ 

= ~~~(w , - w , )  +

(l~
2 2

= ~~~~ u~ * - 
5 A — h”

1 4 ‘x ‘ 1< 2 4 V~ , - ~ h(3w- w) , 1< 6 T (t 1 t y +\P t x )

= he~

1 

~~
-._ _ _  JJ .T T~TTTTT I~~IT~ :.~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TT TT~~~ ~~~~~



AFML—TR—77 - 113

where  lower case Latin subscr ipts have the range 1 , 2 , 3, 4 , 5 , 6  and Greek

sub scr ipts assume the values 1, 2 , 3, 6. Letting S.. . represen t the (mono-

clinic) compliance matrix as given by eq. ( 1 2 )  of [ 1] ,  we make the f u r t h e r

defini t ions

A , = ~s,• + . 5 . S
ij 5 3i 3j 33

(2)

B.. = [S .. + - ~~ 5 . 5 . S 1
1

13 t j  7 3x 3j  33

where 8 .. is the Kr onecker  delta and the superscr ipt - 1 stands for  ma t r ix

inverse. Throug hout this work , summation over the range of repeated sub-

scripts , but not superscripts , is implied. We may now invert the consti-

tu tive r ela ti ons , (25)  of [ 1} ,  to get

A S h
N = A (e - a ) + 

3a ~ ~ + p
a ~~~~ ~ 10 1 2

B S h2
3a 33M = B ~< + — (p.,- p

a ~.o ‘. 1

(3)

V = A44 e~ + A 45e5 + ~~~ 
(s

1+s 2 )

V = A45e4 + A 55€ 5 + -~~ (t
1
+t2)

where standard contracted notation has been employed in the f i r s t  two

expressions , following the subscript relations g iven in (8) and (9) of [ I ] .

Since the stresses in the present class of boundary value problems

only depend on y and z , it follows that the force and moment resultants  and

the interlaminar stresses will only depend on y. Hence , from (3) , the de-

formation measures are functions of y alone and by use of eqs. (1), it can

2
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be shown that the most general form of the weighted displacem ents is g iven

by

U = U(y) + c 1xy + c
2
x

2c x
= V(y) - 2 

+ c
3
x

h~ = W(y) - 6c
5
xy - 3c6x2 + 3c4x

( 4)
= 

~J
s(y) + c

6
x

v~~ = ~ (y) + c
5
x $ 1

w~
’ = ~ ( )

A 2
hw = )((y) - Zc 5xy - c6x + c4

x

where U ---  X are arbitrary functions of y and c
1 ---  c6 are constants.

We should recall that eqs . (1) - (4) must be written for each layer.

We now substitute eqs. (4) into (1), then into (3) , and finally into

the equilibrium equations, (26) of [ 1], in which the x dependence is dropped

to establish the following relations

A22h 
v~ + 3A23~~’ + 

A26h 
ut1 + 

A23S33h 
+ + S

2 
= - 

A 12h 
c
1

A ,h A h A S h A hZb v11 + 3A 36~~’ + 
66 U’t + (p ’1 + p~~) + ~~ - = - 16 

c1 (5)

h
2 

h
2

B22 
~~~~ + ~~B23 (3X ’ - W ’ )  + 

~~~
“ - ~~A45~~jA 44

(Wt~ ~~ ‘ + 4fl)

3

_____________  .. .. ~~~~~~~~~~~~~~~~~~~~~ ~~~~~
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B S h 2 
h 5

+ 
23 33 (~~~- 

~ 
+ ~~~~~~ + = ~~A45 (c

4- 
Zc
5

y )

B h2 5B B h2 SA
26 

~~~~~ + 4
36 ( 3X’ - W’) + 

6 
- 2~~ 

- ~ A45(W ’ - ~~ + 4Q)

B S h2 
h 5

+ 
36

2:3 (P~~- 
~P + 

fr 
(t

1 
+t
2) ~~A55

(c4- 
Zc5y)

A h A h 
h
2z

~
3 V ’ + 3A

33 ~~ + 
36 

U’ + 
~~ 

(A
33
S
33

- 5) (p 1
+ 

~z) + -

~

-

~~ ~‘1- s~) =

A
13

h A
36
h

- 

2 (c 1y + c2) 
- 

2 c
3 + A

3~ a~ (5 cont’d)

____  
h

2 ~èl + ~~ A~~ (Wu ~ X” + 4 W )  + ~ 2 p 1 + + s~~ ) ~~ A 45 c5

SB ZS B 5B
23 

2h
2 W)+ 

~ 
IIL ” ’  + 1¼(5B33

S
33- 

14) (p
2- 

p
1 ) 

- 

~ã
(s1

1
.fs

~
) =

SB
1 3
c
6 

5B
36
c
5

- 2 - 
2

which are also valid within each layer. The remaining field equations, the

interface continuity Cofldj tj OflS , are given by substituting (4) into (27) of [1],

which gives

( h 5 5 W’ h
~~ ~~

‘ - - T - ~~ [S44(3s 1- 
s
2)+ S45

(3t
1- 

t2)]) 
- (v

(k) (k+ 1 ) (k)
- i~~ t + ~ ci- ~~~)~ ‘ + + -

~~~~ [S44(3s2-s 1
)+S45

(3t
2- 

t
1)J) 

= 3(c
5 

+ c
5
)x

4 

_ _
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(k) (k+1~ (k+1) (k) 2
+ (c

3 
- c 3 )x + ~~ (c

1 
- c 1)x

(u - - ~~ [s~ 5~~
s
1- 

s
2)+ S55

(3t
1 - 

t
2)])~~~~~ (~ + + ~~ [s~5~~s2 - 

~~

(k) (k+1)(k) (k) (k+1 ) (k+1)(k) (k) (k+1) (k+1)(k)
+ S55(3t 2 - t 1)J) = ~ (c

5
+c

5
) y + ( c

1
- c

1 
)xy+ 3(c6

+ c
6
)x + ( c

2
- c

2
)x - ~~~~ + c~~)

~~~~~ 
~~A23

hVt+21 (
~ 

- A
3~~~~ ~~A 36hU’ + ~~~ B23h f f +~~~~(3B 33-~~~~)~~

- 5B
3~~
W + ~~~ B3~

h~/” + hp 1(6 - 
7A

33
S
33 

- 

15B 3:S33)

+hp
2 (i 

7A
33
:
33 

+ 
lSB

3:
S
33)

~
k+l) 

(6 conV d)

(k)

f A23hV’ + zi( .~-~-- - A
33)~~~ ~‘A 36

hU’ - -
~~~~~ B23

h~l’ +~
(j— - 3B33)~~

+~~~~ (s~~~3
_
~~~~ ) W - ~~~ B36

h~~ + hp 1 (i 

7A 33S33 
+ 

1sB
33

s33) + hp
2 
.

(k) (k+l) (k+1) (k)

~ 
7A

33
S
33 ~~~~~~ r 1c 5 C

5 \ / C
4 

C
4

• t~6- 10 
- 

14 JJ 
= 105 

~~~ 
j~~~~~~)XY +

~~ j— - i— ) X

(k) (k+1)
C

6 
c
6 

(k+ 1)(k+ 1) (k+ 1) (k) (k) (k)

+(~ 
_
~~~

) x J + ~~~
(S 33 A

l3
hk+l c l + S33 A l3 hk c 1

)

+
~~~~~~~~~ A 13hc 2 +~~ A 36hc 3- -

~~~~~ B13
hc
6- 

-
~~~~ B36

hc
5- ~~~~~~~~~~~

+ S33(~~A 13hc 2 + ~ A 36hc 3+ -
~~

— B 13hc 6 + -

~~~

- B
36
hc

5- 
7A

3~~~
)

— ~~~~~ _ _ _ _ _ _ _  ii: ~
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and 
(k+1) (k) (k+1) (k) (k+l) (k)
t
i 

= t2 , ~i 
= 

~2 
‘ l’l 

= P2 ( 7 )

for k = 1 ,2 •.. N-i.

Due to the sym metric lamination geometry,  the interlaminar shear

stress components and the z disp lacement component , w , all vanis h on the

central plane z = 0. We shall take advantage of these conditions by consid-

ering only the upper half of the laminate , i . e . , z ~-0. Incorporating the

traction- f ree  conditions on the upper surface , our boundary conditions on

the upper and lower sur faces  become

~~~~~~ ( 
f~ 2~ v’ +21 (-~~-- - A33) ~ 

- ~~A 36
hu’ +4~ B23

h~i’ +~~~ (3B 33-~~
1-_)X 

$

+
~~~~ 

(
~~ 

- SB
33) 

W+~~~ B36
h~~’ +h p1(6~ 

7A
33
S
33 

- 

15B
33
S33)

,
, 7A

3~
S33 15B

33
S
33 \

_.
l
(1) 

105 
(1) (1) (1) 2

+hp 2 ~l- 
~~ 

+ 14 )J  
= —i -- (-2c

5
xy+ c4x-c6

x

(1)

~~33~2 
A
13
hc

1y +~~ A 13
hc
2+~~ 

A
36
hc

3- 4~ 
B

13
hc

6
- 4~ 

B 36
hc

5
- 7A

3~ a~ )~
’
~

and ( 1) ( 1) (N) (N) (N)
t
l 

= 
~~~ 

= = 
~2 

= = 0 ( 9)

Since eqs. (6) and (8) must be satisfied for all values of x, it follows that
( k) (k) ( k)

= = c
6 

= 0 , k = 1, 2 ’ ” N  (10)

and (k+ 1) (k) (k+ 1) (k) (k+ 1) (k) (11)
C

1 
= c 1 , c

2 
= c2 , c

3 
= c3 , k = 1 ,2... N-I

so that c
1
, c2 

and c
3 
are the same for every layer.

6
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We now turn our at tention to the edge boundary conditions , which

require consider~.tion of N , N , V , M , M , s and s for each Layer
y xy y y xy 1 2

on y = * b, since , as discussed in [1], only edge tractions are imposed in

the present  class of boundary value problems . Howeve r , all  these func t ions

cannot be independently prescribed because of the consequences  of inter-

face continuity and global equilibrium of tF’e ent i re  lamina te .  That is , the

interface continuity conditions given by the second of (7)  prohibit  a r b i t r a r i ly
(k) (k) ( 1)  (N)

prescribed values of and s
~~

. Fur thermore, s
1 

and s
2 
have already been

specified by (9) for all values of y. These relations , in conjunct ion with the

second equi l ibr ium equation , see (26)  of [ 1] ,  can be used to establish the

result

N (k)

k~~~l 
~~~~ = 0 (12)

which requires that

N (k) N (k)
N(b)- ~~ N(- b) = 0 (13)

k - i  y k - i

(k)
Therefore, only ZN- 1 values of N can be arbitrarily prescribed on the

edges y ± b. We can make the same statement regarding N since an

equation of the form (13) can be derived in similar fashion for this function.

Hence, the edge boundary conditions may be expressed as

(k) (k) (k) (k) (k)
N (b) = N (b) = V(± b) = M(*b) = M (± b) = 0 (k =1 ,2...N)y xy y y xy

(k) (k) (k)
N~ (_b) = N (-b) = s

2(*b) = 0 (k = 1, 2~~
. N-I ) (14)

The present  boundary value problem therefore , consists  of d i f fe rent ia l

equations (5) and (6) subject to the boundary conditions (8) , (9) , and (14).

7 
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The general solution for each dependent variable consists of the sum

of two parts: i) a complementary solution defined by the homogeneous form

of (5) - (9) and , ii) a particular solution. In the part icular  solution (denoted

by subscript P) ,  the onl y nonvani shing functions a re  given by

(k) (k) (k) (k~ (k)  (k )
a
1 

= a
2 

W~ = 3a
2 

(15)

(k)
where a~ (1 1 ,2) are constants given by subst i tut ing ( 15)  into (5 ) , (6)  and

(8) to get

(k) (k) (k) (k )
A

3~~a~~- .A
l 3

h
k

€ )  , k = 1 ,2 N

(1) (1)
a
2 = h

1 
a

1 
( 1 6 )  I

,

(k+ l) (k)
a
2 (k+1) (k) a

2
h 

= a
1 + a

1 
+ j:;— , k = i , 2 ”  N - i

k + 1  k

where we have put

2c
2 

= € , c
1 

= c 3 = 0 ( 1 7 )

and e is the applied axial strain. The second condition , c~ = 0 , follows

f rom the procedure leading to ( 1 5 )  and ( 1 6 ) ,  while c
3 

is se t t o zero since i t

has no effect on the stress field here .

Since the field equations are linear differential equations with constant

coefficients , the complementary solution (subscript H) for each dependent

variable consists of a series of terms of the form

(k) (k)
= Fe~~ (l8~

8

~ 

~~~~~~__ _  ~~~~
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(k) (k)
where f stands for any of the dependent variables and F are constants.

Substituting (18) into the homogeneous form of eqs. (5) - (9) leads to a

system of 1 3N linear algebraic equations . The value s of A are determined

by setting the determina nt of the coefficients equal to zero. Algeb raic

expressions for the expansion of the determinant were not written owing to

the complexity of such expressions even in the simplest cases . Rather ,

computer calculated values of the determinant for specific values of A, as

di scussed later , were employed to continue the analysis . Hence , it is not

possible to exhibit the mathematical details of the remaining steps in the

solution. Therefore, this phase of the work will be presented in a

descriptive fashion.

Although our determinant is too complex to evaluate in general terms,

we can examine the nature of its polynomial (in A) expansion in some detail

for fairly small va lues of N and extend the resu lts by induction*. We can

also develop a procedure to search for terms in the determinant in which

the highest and lowest powers of A occur . Proceeding in this fashion for

values of N = 1 (in which case the interface continuity conditions are dropped)

2 , 3, and 4, we make the following observations: i) Only even powers of A

occu r in the determinant, ii) The lowest power of A is A4 , and iii) The
12N- Zhighest power of A is A . Although these results are not perfectly

r igor ous , no contradicti ons have been found . Furthermore , the numbe r of

A roots is consistent with the number of edge boundary conditions, a~ dis-

cussed later.

An exception to the form (18) occurs with the appearance of repeated

roots for A. Since repeated zero roots always occur , it is necessary to

treat the corresponding part of the solution separatel y. In this part of the

solution, (18) is replaced by a third degr ee polynomial in y . Representing

the functions corresponding to the repeated zero roots by subscripts Ho, we

*Although we have not done it here , it is possible to develop a program to
define the powers of A occurring in each term of the determinant for arbi-
t ra ry  values of N by use of a computer.

9
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find from the homogeneous form of (5)-(9) that the only

functions are given by

(k)
U
H 

= C
1y + C

(k)
V
H 

= A 1 y + A

(k) (k)
= B (19)

Ho o

(k) ( k)
X = EHo o $
(k) (k)
W = 3E
Ho o

where
(k) (k)

(k) ( A23 A + A3 C )
B = - 1 6 1  k = 1,2”~~No 6A~~

( 1)  (1)
E = h B  (20)
o 1 0

~k+ 1) (k)
E (k) E (k+ 1)

0 
= B + 

__
~2. 4 B , k = 1, 2 ~~~~~ N-lhk+l 0 h
k

The constants A and C define rigid body translation of the laminate as a
0 0

unit. The remaining constant s in (19) can all be expressed in terms of A 1
and C 1. Hence , two constants which effect the stress distr ibution have been

introduced in the repeated zero part of the homogeneous solution.

The remaining portion of the complementary solution consists of

functions of the form (18) corresponding to the IZN-  6 nonzero values of A

(we are assuming that these roots are all distinct) . These roots , which occur

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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in combinations of the form ± (a± ib), where b may vanish, were determined

by computing the value of the determinant for 6N- 2 values of A2 
and using

these resu1t~ to solve f or the coefficient s of th e eq uivalent polynomia l. Once

the pol ynomial has been established , its roots can be determined throug h

standard computer routine .. . In the usua l manner , one equation in the homo-

geneous ve rsion of (5)-  (9) may be dropped and the reduced system used to

relate all but one of the arbi t rary cons tants to the remaining constant for

each value of A. This procedure leads to 12N- 6 arbi t rary constants . These

constants, aug m ented b y A 1 and C 1, are eva luated via the 12N-4 ed ge

boundary conditions (14) . Once these constants are defined , the complete

solution for any of the l3N functions appearing in (5)-(9) is given by

(k) 12N-6 (k) Am 
(k) (k)

f = 
~~ 

F e + 
~H0 

+ f~ (2 1)
m =1

where the last two terms are defined by (15), (16), (19) and (20). The force

and moment resultants are now given by (3) upon using the results of (4)

and ( 1).

A special case arises in the solution that requires separate treatment.

This case is defined by the vanishing of compliance coefficients S16, S26,
S
36 

and S
45

, as well as expansional strain e6, in every layer. The situation

arises when each layer is isotropic and/or oriented at an angle of 00 
or 90

0
.

(k) (k) (k) (k) (k) (k)
This leads to the vanishing of U , ~~~ , t 1, t2, N , and M .  Consequently,

dropping the appropriate field equations and boundary conditions we find

that setting the determinant to zero leads to only two zero roots for A and

8N-4 nonzero roots. The number of boundary conditions (14) reduces to

8N- 3. Otherwise , the treatment presented here remains unchanged.

The occurrence of very large magnitudes of A for large N in the present

formulation leads to values of e*~~ which exceed computer limits. This in

turn restricts the values of N which can be treated. For example, N= 6 was

11
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the largest value permissible for the properties assumed in [1J . Resolution

of this difficulty is now being considered.

Numerical results of the present solution are presented in [1].

‘ 7
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